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Motivating example: Brassica napus field trial

> Leaf gene expression measured in autumn 2016, phenotypes
in spring 2017 [3]
» Scientific aim: predict phenotypes from gene expression,
estimate RMSE () [2]
> Single gene models (GLS): §; = Bo ~|—A[§x,- .
» Multigene model (elastic net): §; = (o + x; 3
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RMSE estimates
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Winner's curse

» Only the most extreme estimates are of interest
» Estimates 4 are small because

1) True value v is small

2) Estimation error 4 — ~ is small
» Subset of smallest estimates is biased

» E( —~ |4 < c)> 0 despite E(§ —~) =0
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The auction winner's curse
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Empirical Bayes: Tweedie's formula [4, 5]
P> Bayesian statistics = immune to selection bias

dlog ((4)
E(v %) =%+ 0%-54/ )
/

» raw estimate 4; and its variance &3

" gl
> w: derivative of log-density

» No need for prior density!
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A complication: dependence

» All 7;'s are estimated on the same outcome vector y

~

> Correlated estimates => log(f(7)) is too steep
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A theoretical analysis: Hermite polynomials

> Under strong dependence, f(z) behaves as a random function
even as p — oo [1, 6]

o0
F(2) = d(2) ) Wyh(2), (1)
v=0
» h,(z) the v-th Hermite polynomial, Wy =1

E(W,)=0if v>1
a1 pYdG(p) (2)

Var(W,) =

vl vl

» Dependence introduces bias in Tweedie's formula
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Our solution: convolution

» f(z) is too narrow on average

Ew (Var,(z|W)) =1— g (3)

» «1: average pairwise correlation between the z;'s
> Solution: convolute (z) with N(0, a1)

P
=p 'Y _ri(zlz, ). (4)
j=1
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Simulation study
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Real data analysis: B. napus revisited

RMSE estimate
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Conclusions

» Formal proof that Tweedie’s formula is biased under strong

dependence
» Solution: convolution with a single parameter normal

distribution
» Superiority of single marker gene predictions may be illusory
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