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Introduction

Forces driving the evolution of genetic diversity in populations
• Mutation : generates variability

• Drift : introduces stochasticity (Finite Population Size)

• Migration (gene flow)

• Selection

Different Influences of the evolutionary forces
• Demographic Factors (genetic drift, gene flow) expected to be common to all loci

=⇒ Global (genomic) effect → correlation structure of pop. allele frequencies

• Selection (mutation and recombination) expected to vary across loci
=⇒ Local (genomic) effect
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Introduction

General assumption
• Diversity (pop. allele freq.) at loci underlying (genetic) adaptation of populations

co-vary with fitness-related traits (but see Lotterhos, 2022)

Genome-wide association with population-specific covariables

• Modelling the relationship between genetic diversity and population

covariables of interest across several (differentiated) populations may allow
• uncovering the nature of adaptive traits and their genetic architecture
• predicting covariate value from genomic information

• Different covariables of interest
• Environmental (e.g., bioclimatic covariates, host plant, etc.) ⇒ GEA
• Phenotypic (e.g., mean height, mean weight, coat color) ⇒ “pGWAS”

Demographic history : a critical confounding factor
• Shared population history ⇒ covariance structure of allele freq.
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The BayPass core model (Gautier, 2015)

��
��

aπ
aπ+bπ

∼ U(0; 1)

H
HHj

��
��
aπ + bπ∼ Exp(1)

�
���

��
��
Ω−1 ∼ WJ

(
1
ρ
IJ, ρ

)
����

��
��

πi ∼ β (aπ ; bπ)

HHHj

��
��
α⋆

i ∼ NJ (πi1J;πi (1− πi )Ω)

yij , nij yij ∼ Bin
(
αij ; nij

)?

• Multivariate Gaussian prior on pop.
(reference) allele frequencies (see Coop et al.,

2010) of the I SNPs on J pops

• “instrumental” allele freq. α⋆
ij defined

over the real line support :

αij =


α⋆
ij , if α⋆

ij ∈ (0, 1),

0, if α⋆
ij < 0 (allele “lost”),

1, if α⋆
ij > 1 (allele “fixed”).

• πi might be interpreted as the
“ancestral” ref. allele freq. of SNP i

• Ω = J × J scaled covariance matrix of
allele freq.

• Ω ⇔ “population relationship matrix” (captures the global effect of the demography)

• Scaled allele frequencies (i.e., corrected for pop. demographic history) :

Xi = {α̃ij}1..J = Γ−1 α⋆
i −πi√

πi (1−πi )
with Ω = Γ′Γ (Guenther & Coop, 2013 ; Olazcuaga et al., 2020)
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BayPass models for association studies (GEA/pGWAS)

General Principles
• Equivalent to a multivariate linear regression of the scaled allele frequencies α̃ij

(SNP i ; pop. j) on K pop. covariate vectors Z (k)
k =

{
zjk

}
1..J

(⇔ “fixed” effect) :

α̃ij =
K∑

k=1
βikzjk + ϵij with ϵij ∼ N (0, 1)

• Accounts for the confounding (⇔ “random”) effect of shared population history by
the modeling of α̃ij (instead of αij )

• If β̂ik ̸= 0, SNP i is deemed associated with the kth covariate

In BayPass : 3 procedures to estimate the βi ’s and/or BF’s

• From α̃ij ’s sampled under the core model with MCMC :

• Importance Sampling approximation of the βi ’s and BF
• “quick and dirty” and ⇔ univariate regression on each covariable in turn

• MCMC sampling of the βi ’s ⇒ accurately estimated but decision harder

• Penalized regression ⇒ BF estimation (but some βi ’s shrinked towards 0)
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The “AUX” covariate model (i.e., with ‘auxiliary variable’)
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• The binary variable δi specifies whether the SNP is associated (δi = 1) or not (δi = 0)

• Integrating over P (prop. of associated SNPs) allows dealing with multiple testing issues

• From P[δi = 1|data] (a.k.a. PIP), BFmc =
Post. odds
Prior odds

= PIP
1−PIP

× 1−E[P]
E[P]

(with E[P] =
aP

aP+bP
)
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Example of applications
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GEA models : beyond the hunt for genes...

Simple (but efficient) modeling of the relationship (across populations)

between adaptive genomic composition and the environment
• In GEA linear models (e.g., BayPass) : the β’s quantify the effect of (env.)

covariates on the genetic diversity of adaptive variants

α̃ij = β
(1)
i z

(1)
j + . . .+ β

(K)
i z

(K)
j + ϵij

• The (nsnps × ncov) matrix B = {βik} summarizes (linearly) the relationship
between adaptive genetic diversity and environment (on a genome-wide basis)

Some assumptions to gain insights from B (Gain et al., 2023)

• Genotyped SNPs capture the whole-genome adaptive genetic diversity

• Sampled populations are representative of species diversity (for the

geographical scale of interest) and locally adapted

• (some) covariables are (co)related to the (main) selective pressure
B may then give insights into those driving adaptation (e.g., via s.v.d.)
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Evaluating population maladaptation to a new environment

The (geometric) Genetic Offset (Gain et al., 2023)

• If eo (resp. e⋆) is the vector of the K covariable values (e.g., bioclim variables) for
the original (resp. new) environment :

GO = 1
I
(eo − e⋆)′ B′B (eo − e⋆) = 1

I

I∑
i=1

(
ẽi − ẽ⋆i

)2
• ẽ = Be =

{
K∑

k=1
βikek

}
i

is the nsnp-length vector of global effect of environment

on genetic div. at each SNP (NB : ẽi = 0 if SNP i is “neutral”)

• GO ⇔ (squared) euclidean environmental distance (“genetically”) weighted by the
env. effect on adaptive genetic diversity)

Properties of (geometric) GO
• GO ∝ − log (w (x , x⋆)) where w (x , x⋆) < 1 is the relative fitness value of traits

at equilibrium in e when placed in e⋆

• Supported by simulated and empirical data (e.g., Laruson et al., 2022, Gain et al., 2023)
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GO to predict population invasiveness (Camus et al., 2024)

  

Simulation Study
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Genomic prediction of population covariate

Rationale
• Rely on GEA modeling of the relationship between genetic and covariate

variation across populations to estimate population covariate values
⇒ pop-specific covariate is treated as a random variable

• Interpretation : pop. mean phenotype or tolerance range (e.g., for env. covariable)

Extending the BayPass model for genomic prediction
• Modeling uncertainty of the population covariate values

• full uncertainty ⇒ prediction
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The ‘AUX’ genomic prediction model (univariate case)
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Empirical evaluation : dog breeds weight (Gautier, in prep)

• Data (Hayward et al., 2016)

• Genotypes : 155,609 SNPs genotyped on 111 dog breeds (n=6–636)

• Phenotypes : mean male weight of each breed (American Kennel Club)

• ‘Leave-one out’ analysis (1 predicted pheno. vs. 110 known ±0.01)
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Conclusions

Linear models : not as trendy as AI but still useful !
• Flexible, robust (to non-linearity)

• Competitive esp. with limited number of pop. samples (bias-variance trade-off)

Why bother with (old-school) Bayesian modeling as in BayPass ?

• Versatility makes it easy (but more computationally expensive) to account for
• neutral structuring of genetic diversity (demographic history)
• unbalanced designs, missing data, additional source of variation (e.g., Pool-Seq, pop. covariables)
• combined data sets (Pool-Seq + Ind-Seq GL + count data in BayPass 3.0)

• Yet, urgent need to accelerate MCMC (subsampling, HMC)

Predictive approaches are promising but still need

• Further evaluation on real (e.g., D. melanogaster) and simulated data (SLiM)

• GO : robustness to genetic architecture, demographic history (e.g., admixture), genetic load, etc.

• Genomic Prediction : sensitivity to the nb. of SNPs (LD), genetic architecture, etc.

• New developments esp. for (pop-level) genomic prediction :
• BayPass : extend to categorical variable (e.g., fruit) ; multivariate GP
• Comp. with other (machine/deep learning) approaches (e.g., Random Forest or CNN)
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