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Introduction

Forces driving the evolution of genetic diversity in populations

® Mutation : generates variability
® Drift : introduces stochasticity (Finite Population Size)
® Migration (gene flow)

® Selection

Different Influences of the evolutionary forces

® Demographic Factors (genetic drift, gene flow) expected to be common to all loci
—> Global (genomic) effect — correlation structure of pop. allele frequencies

® Selection (mutation and recombination) expected to vary across loci
= Local (genomic) effect
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Introduction

General assumption

® Diversity (pop. allele freq.) at loci underlying (genetic) adaptation of populations
co-vary with fitness-related traits (but see Lotterhos, 2022)

Genome-wide association with population-specific covariables

® Modelling the relationship between genetic diversity and population
covariables of interest across several (differentiated) populations may allow
® uncovering the nature of adaptive traits and their genetic architecture
® predicting covariate value from genomic information
® Different covariables of interest

® Environmental (e.g., bioclimatic covariates, host plant, etc.) = GEA
® Phenotypic (e.g., mean height, mean weight, coat color) = “pGWAS"

Demographic history : a critical confounding factor

® Shared population history = covariance structure of allele freq.
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Genetic Offset Genomic Prediction
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The BAYPASS core model (cautier, 2015

Yij, Nij

wi (300)

vij ~ Bin (e n)

~ Ny (mily; (1 — 7))

2010) of the | SNPs on J pops

allele freq.

® () & “population relationship matrix”

(captures the global effect of the demography)

® Scaled allele frequencies (i.e., corrected for pop. demographic history) :

Xi= {au}l J =12

with Q =
mi(1—m;)

r’r (Guenther & Coop, 2013; Olazcuaga et al.,

Conclusions
[o]e]

® Multivariate Gaussian prior on pop.
(reference) allele frequencies (see Coop et al.,

® ‘“instrumental” allele freq. a,*j defined
over the real line support :
aU*-, if a}} € (0,1),
aj =10, if aff < 0(allele “lost”),
1, if a}; > 1 (allele “fixed”).

® 7; might be interpreted as the
“ancestral” ref. allele freq. of SNP i

® ) = J x J scaled covariance matrix of

2020)
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BAYPASS models for association studies (Gea/pcwas)

General Principles

® Equivalent to a multivariate linear regression of the scaled allele frequencies &;;

(SNP i; pop. j) on K pop. covariate vectors Zik) = {sz}l..J (& “fixed” effect) :

K
Qjj = \_: Jik Zjje + €jj with € ~ N (0, 1)
k=1
® Accounts for the confounding (< “random”) effect of shared population history by
the modeling of ; (instead of o)

° If ,E,-k #0, SNP i is deemed associated with the k'™ covariate

In BAYPASS : 3 procedures to estimate the (3;'s and/or BF's

® From aj;'s sampled under the core model with MCMC :

® Importance Sampling approximation of the 3;'s and BF
® “quick and dirty” and <> univariate regression on each covariable in turn

® MCMC sampling of the §;’s = accurately estimated but decision harder

® Penalized regression = BF estimation (but some $;'s shrinked towards 0)
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The “AUX” Covarlate mOdel (i.e., with ‘auxiliary variable’)

y,'j, n,j yij ~ Bin (min(l, max(0, a;)), n,-j)

® The binary variable §; specifies whether the SNP is associated (§; = 1) or not (§; = 0)

® Integrating over P (prop. of associated SNPs) allows dealing with multiple testing issues

* From P[5 = 1|data] (aka. PIP), B, — fiodte o P L EE (i Egp) =

ap )
ap+bp
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Example of applications

200

A) pGWAS and color morphs in the ladybird beetle H. axyridis Gautier et al., 2018)

14 (Pool-seq) sample with [ y s . :
varying prop. of (recessive) :
red-morph inds. H

RNA:i validation of pannier
° i |v‘ * = ¥

chrt

o2

ohra chra chrs.

B) GEA and climate adaptation in A. thaliana (frachon et al., 2018)

GEA with 6 non correlated env. Covariates (e.g. Mean Annual Temperature)
A
920 (@ sNP5_1193613 @ snes5 1193613
£ o1s . . = .
& 3 .
= = S
R
g 0.7Mb v 1.7Mb
& & (® sNP5_1193613
3 3
s =
o 3 3
168 (Pool-Seq) samples @ @
(micro-geographic scale)
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GEA models : beyond the hunt for genes...

S'mple (but efficient) mOde|Ing Of the relat'onsh|p (across populations)
between adaptive genomic composition and the environment

® In GEA linear models (eg., BavPass) : the 8’s quantify the effect of (env.)
covariates on the genetic diversity of adaptive variants
aj = /3,(1)2]_(1) + ...+ ﬂfK)zj(K) + €

® The (nsups x ncov) Matrix B = {Si} summarizes (iinearly) the relationship
between adaptive genetic diversity and environment (on a genome-wide basis)

Some assumptions to gain insights from B (Gain et al., 2023)

® Genotyped SNPs capture the whole-genome adaptive genetic diversity

® Sampled populations are representative of species diversity (for the
geographical scale of interest) and locally adapted

® (some) covariables are (co)related to the (main) selective pressure
B may then give insights into those driving adaptation (e.g., via s.v.d.)
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Evaluating population maladaptation to a new environment

The (geometric) Genetic Offset (Gain et al., 2023)

® If e, (resp. €*) is the vector of the K covariable values (e.g., bioclim variables) for
the original (resp. new) environment :

GO =1(eo—e*) B'B(eo—e*) =13 (§—¢&)°

!
=1

i

K
® é=Be= { S [3,—kek} is the nsnp-length vector of global effect of environment
k=1 .
1
on genetic div. at each SNP (NB: & = 0if SNP / is “neutral”)

® GO & (squared) euclidean environmental distance (“genetically”) weighted by the
env. effect on adaptive genetic diversity)

Properties of (geometric) GO

® GO x —log (w (x,x*)) where w (x,x*) < 1 is the relative fitness value of traits
at equilibrium in e when placed in e*

® Supported by simulated and empirical data (e.g., Laruson et al., 2022, Gain et al., 2023)
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GO to predict population invasiveness (camus et al., 2024)

Simulation Study

3 "native" environment grid (5 x 5 pop.) with 10 individuals from a source Each invasion is replicated 50
two environmental variables, polygenic ==2» population are randomly chosen =2 times under a non-WF model
local adaptation during 3000 generations. to invade a new environment.

Linear Mountain Random :
Env 1 g 17 1 3 possible source populations :
P i! 1 _ Destablishment
: Nreplicates
1
Env 2 + 28884 1
-1 g! !i? : 9 invaded environments
1
=) o Rardar 7 i
. inv_type
H h 0.753 ® i1
H - K\ Go e £ o
T g . o
< RS | v — Zos0- o om
% s Euct Distance ] 000
H - trum
e R — % . o1
2 % 0.25- 11
\ \ u 110
Yy ® 1
s it -
Predicting species invasiveness with genomic data: Is genomic S B M

offset related to establishment probability?
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Genomic prediction of population covariate

Rationale

® Rely on GEA modeling of the relationship between genetic and covariate
variation across populations to estimate population covariate values
= pop-specific covariate is treated as a random variable

® [nterpretation : pop. mean phenotype or tolerance range (eg. for env. covariable)

Extending the BAYPASS model for genomic prediction

® Modeling uncertainty of the population covariate values

® full uncertainty = prediction
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The "AUX" genomic prediction model (nisriste case)

P

Ny (i1 + 6;6ib; mi(1 — m7)S2)

(1)

def.:y.(p:Oando'i:l

Yij 2, 0j 2 ~ N (¢j; 07)

= 7; = 0 = prediction

S
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Empirical evaluation : dog breeds weight (cautier, in prep)

® Data (Hayward et al., 2016)

® Genotypes : 155,609 SNPs genotyped on 111 dog breeds (n=6-636)
® Phenotypes : mean male weight of each breed (American Kennel Club)

® ‘| cave-one out' analysis (1 predicted pheno. vs. 110 known +0.01)

o p=0.894 . . o
R . . .
#=0.763 0"t es o .
- L) . LY
T 8e gec -t
R . ": P . . .
B o * . o R .
o . e o
o o .-
T M e . " .
K L T
Rt
R ) i
.
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Conclusions

Linear models : not as trendy as Al but still useful!

® Flexible, robust (to non-linearity)

® Competitive esp. with limited number of pop. samples (bias-variance trade-off)

Why bother with (sa-schooy Bayesian modeling as in BAYPASS ?

® Versatility makes it easy (but more computationally expensive) to account for

® neutral structuring of genetic diversity (demographic history)
® unbalanced designs, missing data, additional source of variation (e.g., Pool-Seq, pop. covariables)
® combined data sets (Pool-Seq + Ind-Seq GL + count data in BAYPAss 3.0)

® Yet, urgent need to accelerate MCMC (subsampling, HMC)

Predictive approaches are promising but still need

® Further evaluation on real (eg., D. melanogaster) and simulated data (sLim)
® GO : robustness to genetic architecture, demographic history (e.g., admixture), genetic load, etc.
® Genomic Prediction : sensitivity to the nb. of SNPs (LD), genetic architecture, etc.

® New developments esp. for (pop-level) genomic prediction :

® BAYPASS : extend to categorical variable (eg., fruit) ; multivariate GP
® Comp. with other (machine/deep learning) approaches (e.g., Random Forest or CNN)
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