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Motivation

Overall goal behind CP:Quantifying the uncertainty of an algorithm in
its predictions

Why ?

▶ Take a decision regarding these predictions
−→ Need to trust/have confidence in the algorithm

▶ Accuracy is not enough
Global measure ̸= Instance-wise uncertainty quantification

ex: Medical diagnostic −→ Decision for THIS particular patient



2/41

Motivation

Overall goal behind CP:Quantifying the uncertainty of an algorithm in
its predictions

Why ?

▶ Take a decision regarding these predictions
−→ Need to trust/have confidence in the algorithm

▶ Accuracy is not enough
Global measure ̸= Instance-wise uncertainty quantification

ex: Medical diagnostic −→ Decision for THIS particular patient



2/41

Motivation

Overall goal behind CP:Quantifying the uncertainty of an algorithm in
its predictions

Why ?

▶ Take a decision regarding these predictions
−→ Need to trust/have confidence in the algorithm

▶ Accuracy is not enough
Global measure ̸= Instance-wise uncertainty quantification

ex: Medical diagnostic −→ Decision for THIS particular patient



2/41

Motivation

Overall goal behind CP:Quantifying the uncertainty of an algorithm in
its predictions

Why ?

▶ Take a decision regarding these predictions
−→ Need to trust/have confidence in the algorithm

▶ Accuracy is not enough
Global measure ̸= Instance-wise uncertainty quantification

ex: Medical diagnostic −→ Decision for THIS particular patient



2/41

Motivation

Overall goal behind CP:Quantifying the uncertainty of an algorithm in
its predictions

Why ?

▶ Take a decision regarding these predictions
−→ Need to trust/have confidence in the algorithm

▶ Accuracy is not enough
Global measure ̸= Instance-wise uncertainty quantification

ex: Medical diagnostic −→ Decision for THIS particular patient



3/41

Conformal Prediction (CP)
(Vovk et al., 2005)

CP is one way to provide uncertainty quantification

In a supervised problem

▶ Given a new observation
−→ Predict its associated response (point prediction)

In conformal prediction

▶ Given a new observation
−→ Construct a set containing the true response with high probability
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Conformal Prediction (CP)

Regression

Classification
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Main objective

Setup: n i.i.d. (or exchangeable) random variables
Z1 = (X1, Y1), . . . , Zn = (Xn, Yn) ∼ P

Marginal guarantee:

For Z = (X,Y ) ∼ P and given α ∈ (0, 1), construct C(X) such that:

P(Y ∈ C(X)) ≥ 1− α (1)

for any distribution P and any sample size n.

How to do that? −→ The split CP method (Papadopoulos et al., 2002)
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Split Conformal Prediction
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Input: Z1, . . . , Zn and α ∈ (0, 1)
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Split Conformal Prediction
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Randomly split {1, . . . , n} into two subsets I1 and I2
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Split Conformal Prediction
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Learn a predictor f̂ on {Zi, i ∈ I1} (blue)
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Split Conformal Prediction
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Choose a score function s : X × Y −→ R ex: s(x, y) = |f̂(x)− y|

Compute scores Si = s(X,Y ) on {Zi, i ∈ I2} (orange)
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Split Conformal Prediction
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Compute S(r) = the r-th smallest values in {Si}i∈I2 (quantile
computation)

Return
Ĉr(x) = {y : s(x, y) ≤ S(r)}

(ex)
= [f̂(x)− S(r), f̂(x) + S(r)]
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Split Conformal Prediction
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Ĉr(x) = {y : s(x, y) ≤ S(r)}
(ex)
= [f̂(x)− S(r), f̂(x) + S(r)]

−→Which value for r to have: P(Y ∈ Ĉr(X)) ≥ 1− α ?
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Main theorem in CP

Theorem
(Vovk et al., 2005; Lei et al., 2018)

▶ If r∗ = ⌈(1− α)(|I2|+ 1)⌉, the set returns by the Split Conformal
Prediction method satisfies

P(Y ∈ Ĉr∗(X)) ≥ 1− α , (2)

for any distribution P , any score function s(·, ·), and any sample size n
(distribution-free).

▶ If we assume that the scores {Si}i∈I2 and Sn+1 = s(X,Y ) are
continuous, then

P(Y ∈ Ĉr∗(X)) ≤ 1− α+
1

|I2|+ 1
, (3)

with |I2| the size of the second subset.
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Quick proof for intuition

▶ Main argument:

By exchangeability, the rank of Sn+1 among {Si}i∈I2 and Sn+1 is
uniformly distributed over the set {1, . . . , |I2|+ 1}.

▶ In the continuous case, we obtain:

P(Y ∈ Ĉr∗(X))
(def)
= P(Sn+1 ≤ S(r∗))

= P (rank(Sn+1) ≤ ⌈(1− α)(|I2|+ 1)⌉)

=
⌈(1− α)(|I2|+ 1)⌉

|I2|+ 1
≥ 1− α

Remainder: Ĉr(x) = {y : s(x, y) ≤ S(r)}
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Summary of the Split CP method
(Papadopoulos et al., 2002)

Input: Z1, . . . , Zn, and α ∈ (0, 1).

1. Randomly split {1, . . . , n} into two equal-sized subsets I1 and I2

2. Learn a predictor f̂ on {Zi, i ∈ I1}

3. Compute scores Si = s(Xi, Yi) for i ∈ I2

4. S(r∗) = the r∗-th smallest values in {Si}i∈I2 with
r∗ = ⌈(1− α)(|I2|+ 1)⌉

5. Return the set Ĉr∗(x) = {y : s(y, x) ≤ S(r∗)}.

One example in regression:

▶ s(x, y) = |y − f̂(x)|
▶ Ĉr∗(x)(x) = [f̂(x)− S(r∗), f̂(x) + S(r∗)]
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Locally-Weighted Conformal Prediction

The split method with s(x, y) = |y − f̂(x)| gives

Ĉr(x) = [f̂(x)− S(r), f̂(x) + S(r)] .

−→ fixed length!×

Locally-Weighted CP (Papadopoulos et al., 2008):
A split conformal method with another score function s(·, ·):

s(x, y) =
|y − f̂(x)|

ρ̂(x)
,

where ρ̂ is an estimate of the conditional mean absolute deviation fitted
one the samples in I1. The prediction set is now:

Ĉr(x) = [f̂(x)− ρ̂(x)S(r), f̂(x) + ρ̂(x)S(r)] .
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Standard split “v.s.” Locally-Weighted

Figure: Left: Standard split CP. Right: Locally-Weighted CP.
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ConformalizedQuantile Regression (CQR)

ConformalizedQuantile Regression (Romano et al., 2019):

Split CP method with another score function s(·, ·):

s(x, y) = max{f̂α/2(x)− y, y − f̂1−α/2(x)} ,

where (f̂α/2, f̂1−α/2) are two quantile regressors fitted on {Zi, i ∈ I1}.

The prediction set is now:

Ĉr(x) = [f̂α/2(x)− S(r), f̂1−α/2(x) + S(r)] .
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Locally-Weighted “v.s.” CQR

Figure: Left: Locally-Weighted CP. Right: CQR with random forest.
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Comparison

▶ Standard split CP Papadopoulos et al. (2002):
1. Works for any “black-box” predictor f̂
2. Prediction set with constant size

▶ Locally-weighted CP (Papadopoulos et al., 2008):
1. Works for any “black-box” predictor f̂
2. Numerical instability

▶ CQR (Romano et al., 2019):
1. Very adaptive
2. Does not provide a set for a “black-box” predictor f̂
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And in classification?

▶ Y = {1, · · · ,K}
▶ π̂y(x) estimator of P(Y = y | X = x)

Scores for classification

▶ high-probability score:

s(x, y) = −π̂y(x)

▶ (Romano et al., 2020):

s(x, y) =

k∑
c=1

π̂(c)(x)

where π̂(1) ≥ . . . ≥ π̂(K) and k is such that π̂(k) = π̂y
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Another objective

Setup: n i.i.d. random variables Z1 = (X1, Y1), . . . , Zn = (Xn, Yn) ∼ P

For Z = (X,Y ) ∼ P and given α ∈ (0, 1), construct C(X) such that:

1. Marginal guarantee (previous slides)

P(Y ∈ Ĉ(X)) ≥ 1− α . (4)

−→ Probability taken on Dn = {Z1, . . . Zn} and Z = (X,Y ).

2. Training-conditional guarantee
Let α(Dn) := P(Y /∈ C(X) | Dn), given β ∈ (0, 1) we want

P
(
1− α(Dn) ≥ 1− α

)
≥ 1− β . (5)

Remark: E(1− α(Dn)) = P(Y ∈ C(X))
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Training-conditional coverage

Theorem
(Vovk, 2012) In the i.i.d. setting, for any distribution P

P(1− αr(Dn) ≥ t) ≥ P(U(r) ≥ t) (6)

where αr(Dn) = P(Y /∈ Ĉr(X) | Dn) and U(r) ∼ Beta(r, |I2| − r + 1).

If the scores are continuous, 1− αr(Dn) ∼ Beta(r, |I2| − r + 1).
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Quick proof for intuition

▶ U1, · · · , U|I2| ∼ U(0, 1) then U(r) ∼ Beta(r, |I2| − r + 1)
where U(1) ≤ . . . ≤ U(|I2|)

▶ Main argument of the proof:

S1, · · · , S|I2| ∼ FS then S(r)
d
= F−1

S (U(r))

▶ 1− αr(Dn) = P(S ≤ S(r) | Dn) = FS(S(r))

▶ P(FS(S(r)) ≥ t) ≥ P(U(r) ≥ t)
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Training-conditional coverage

Theorem
(Vovk, 2012) In the i.i.d. setting, for any distribution P

P(1− αr(Dn) ≥ t) ≥ P(U(r) ≥ t) (7)

where αr(Dn) = P(Y /∈ Ĉr(X) | Dn) and U(r) ∼ Beta(r, |I2| − r + 1).

−→ P(1− αr(Dn) ≥ F−1
U(r)

(β)) ≥ P(U(r) ≥ F−1
U(r)

(β)) ≥ 1− β

with F−1
U(r)
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Training-conditional Split CP

▶ Find rc such that

rc = argmin
r

{
F−1
U(r)

(1− β) : F−1
U(r)

(β) ≥ 1− α
}

▶ Construct Ĉrc(x) using the split CP method:

Ĉrc(x) = {y : s(x, y) ≤ S(rc)}
(ex)
= [f̂(x)− S(rc), f̂(x) + S(rc)]

−→ By construction, Ĉrc(x) is training-conditionally valid.
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▶ Construct Ĉrc(x) using the split CP method:
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Upper bound

Theorem
(Vovk, 2012)

In the i.i.d. setting, for any distribution P and any β ∈ [0, 0.5), if the scores
are continuous

P

(
1− α ≤ 1− αrc(DN ) ≤ 1− α+

√
log(1/β)

2|I2|

)
≥ 1− 2β , (9)

where Ĉrc(X) is returned by the training-conditional split CP method.
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In summary

With split CP:

▶ If r∗ = ⌈(1− α)(|I2|+ 1)⌉, then

P(Y ∈ Ĉr∗(X)) ≥ 1− α , (10)

−→Marginal guarantee

▶ If rc = argminr

{
F−1
U(r)

(1− β) : F−1
U(r)

(β) ≥ 1− α
}
, then

P(1− αrc(Dn) ≥ 1− α) ≥ 1− β (11)

−→ Training-conditional guarantee
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A conditional guarantee

Overall, we want in fact a set such that:

P (Y ∈ C(X) | X = x) ≥ 1− α , (12)

for all P and almost all x.

Impossibility result (Vovk, 2012)

If Ĉ , constructed from a finite sample, satisfies the above equation, then
for all distributions P , it holds that

E(leb(Ĉ(x))) = ∞

at almost all points x. Here, leb(·) is the Lebesgue measure.

−→ distribution-free conditional guarantee is impossible to attain in any
meaningful sense.
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Other conditional guarantees

Two lines of research

▶ Approximate conditional guarantee:

P (Y ∈ C(X) | X ∈ A) ≥ 1− α , (13)

e.g. (Lei and Wasserman, 2014; Gibbs et al., 2023)

▶ Asymptotic conditional coverage:

P
(
Y ∈ Ĉ(X) | X = x

)
−−−−−→
|I2|→∞

1− α , (14)

e.g. (Chernozhukov et al., 2021; Sesia and Romano, 2021; Izbicki et al.,

2022)
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Avoiding data-splitting

Issue with split CP: Split the data = loss in accuracy for f̂ .

Other CP methods:

1. Full conformal prediction

2. Jackknife+

3. CV+
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Full Conformal Prediction
(Vovk et al., 2005)

Input: Z1, . . . , Zn, and α ∈ (0, 1).

1. For any y ∈ Y , construct f̂y with Z1, . . . , Zn, and (X, y)

2. Sy
i = |Yi − f̂y(Xi)| and Sy

n+1 = |y − f̂y(X)|

3. If Sy
n+1 ≤ S(k∗) with k∗ = ⌈(1− α)(n+ 1)⌉ then add y to the set.

−→ These steps must be repeated for each value of y.

−→ In practice, we must restrict us to a discrete grid of trial values y.
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Full Conformal Prediction

Theorem
(Vovk et al., 2005)

If data are exchangeable and f̂ is symmetric, the set returns by the Full CP
method satisfies

P(Y ∈ Ĉ(X)) ≥ 1− α . (15)

Moreover, if we assume that the scores {Sy
i }i are continuous, then

P(Y ∈ Ĉ(X)) ≤ 1− α+
1

n+ 1
. (16)
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No training-conditional coverage guarantee for full CP

Theorem
(Bian and Barber, 2022)

For any sample size n ≥ 2 and any distribution P for which the marginal PX

is nonatomic, there exists a symmetric and deterministic regression algorithm
f̂ such that the full conformal method satisfies

P
(
1− α(Dn) ≤ n−2) ≥ α− 6

√
logn

n
. (17)

−→Without additional assumptions on P and/or on f̂ , we cannot avoid
the worst-case scenario.
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Jackknife+
(Barber et al., 2021)

Input: Z1, . . . , Zn, and α ∈ (0, 1).

1. For i in {1, . . . , n}:

Learn f̂[n]\{i}, the model fitted to the training data with the i-th
point removed

S−
i =

(
f̂[n]\{i}(Xn+1)−Ri

)
S+
i =

(
f̂[n]\{i}(Xn+1) +Ri

)
,

where Ri = |f̂[n]\{i}(Xi)− Yi|

2. Return Ĉ(Xn+1) = [S−
(n+1−k∗), S

+
(k∗)] with k∗ = ⌈(n+ 1)(1− α)⌉
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CV+
(Barber et al., 2021)

Input: Z1, . . . , Zn, A1 ∩ . . . ∩AK = [n] a partition of the training data
intoK subsets of size n/K , and α ∈ (0, 1).

1. For k in {1, . . . ,K}:

Learn f̂[n]\Ak
, the model fitted to the training data with the k-th

fold Ak removed

S−
k,i = f̂[n]\Ak

(Xn+1)−Ri

S+
k,i = f̂[n]\Ak

(Xn+1) +Ri,

with i ∈ Ak and Ri = |f̂[n]\Ak
(Xi)− Yi|

2. Return Ĉ(Xn+1) = [S−
(n+1−k∗), S

+
(k∗)] with k∗ = ⌈(n+ 1)(1− α)⌉
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A summary of all the results

Marginal guarantee:

▶ Ok for all the methods (if f̂ symmetric and data exchangeable)

Training conditional coverage guarantee:

▶ Ok for Split CP and CV+ method (if data i.i.d.)

▶ Not possible for full CP or jackknife+ methods without additional
assumptions

Conditional guarantee:

▶ Not possible without additional assumptions
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A final important question

Are coverage guarantees enough? −→ No

▶ Take Ĉ(X) = R with probability 1− α and Ĉ(X) = ∅ with
probability α
−→ P(Y ∈ Ĉ(X)) = 1− α

We must look at the size of Ĉ(x)

Size of Ĉ(x)

▶ Asymptotic results, under strong assumptions
▶ Empirical evaluations
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−→ P(Y ∈ Ĉ(X)) = 1− α

We must look at the size of Ĉ(x)
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CP in practice

Setup

▶ Evaluation on 5 regression data sets

▶ Split CP

▶ score function is s(x, y) = "CQR withQuantile Random Forest"

▶ α = 0.1 and β = 0.2
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CP in practice

Metrics

On 50 random training-test split, we compute:

▶ Coverage (on the test set)

▶ Length of the returned set
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Results on all the data sets

Marginal

Training conditional

Figure: Empirical coverages of prediction intervals (α = 0.1). The white circle
represents the mean.

Before left of the box: 20% of the points
After right of the box: 20% of the points
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Result on one data set

Marginal

Training-cond.

Marginal

Training-cond.

Figure: Coverage (top) and average length (bottom) of prediction intervals. The white
circle represents the mean.
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Other important topics

Beyond the standard setting

1. Online setting

2. Weighted CP

3. Decentralized setting
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Online CP

Setup

▶ Sequentially observe pairs {(Xt, Yt), t ≥ 1}

▶ No assumption on the data

Objective

▶ Control of the False Coverage Proportion (FCP)

1/t ·
t∑

k=1

1{Yt /∈ Ĉt(Xt)} − α (18)

e.g. (Gibbs and Candes, 2021; Zaffran et al., 2022; Angelopoulos et al., 2024)
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Weighted CP

Setup

▶ (X1, Y1), . . . , (Xn, Yn) ∼ PY |X × PX

▶ (X,Y ) ∼ PY |X ×QX (covariate shift)

Objective

▶ Construct a marginally valid set for Y

How?

▶ Give more importance to calibration points that are closer in
distribution to the test point:

1. Estimate the likelihood ratio dQX/dPX

2. Use a "weighted empirical quantile" to construct the set

e.g. (Tibshirani et al., 2019)
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Decentralized CP

Setup

▶ m agents and a central server
▶ nj i.i.d. random variables per agent

−→ i-th data of agent j: Zj
i = (Xj

i , Y
j
i ) ∼ Pj

Objectives

Construct a set with guarantees when:

1. Only one round of communication

2. Heterogeneous data

e.g. (Humbert et al., 2023; Lu et al., 2023; Plassier et al., 2023; Humbert
et al., 2024)
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Take home messages

1. Conformal prediction works (both in theory and in practice)

2. Easy to implement on top of any ML methods

3. Coverage is not all you need
−→ You have to look at the size of the sets

Nice recent reference

Theoretical Foundations of Conformal Prediction (2024)
by A N. Angelopoulos, R F Barber, and S Bates
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